在线咨询
电话咨询
微信咨询
TOP

究竟什么是数智化人才管理?(篇章一)

作者:益才    发布时间:2022-08-15
“HR数字化转型、EHR、DHR、DTM------”这些词汇已成为近年来各大HR行业活动、论坛、人才峰会的标配,紧随着企业组织数字化转型的集结号,不冠以这些热门标签似乎显得活动价值不高,市场活动的吸睛标语无非是昙花一现,就怕当局者迷离了心智,混淆了视听,不仅没厘清概念,反而收获了一种混沌的占有感:都见过,不新鲜,我了解。益才将通过3个篇章分享对于“数智化人才管理”的研究与应用,本章为开篇。


图片


HR从业者对于EHR的概念并不陌生,许多企业都有自己的人力资源管理系统,DTM(Digital Talent Management)的概念相对新颖,免不了就有类似的困惑:DTM经常提到“人才大数据分析决策”,到底是什么样的人才大数据?怎么进行分析和决策?已经有了EHR平台,还需不需要DTM系统?是不是在原有EHR系统上加入人才盘点、360度测评等等人才管理的应用内容,进行功能完善就升级为DTM了?
我们一起来梳理下这EHR和DTM二者的关系,缕完后,关于做法上的困惑也就明朗了。从几个真实的人才管理场景说起:

  • 比如你公司今天的战略中计划开拓东北大区,要找一个区域总统管东北这个市场,这个人需要有成熟的市场开发的经验,要有跨区域管理的经历,还得有调动的意愿,作为HR,你通过这几个关键指标和标签进行搜索,能够胜任这个东北大区老总的候选人立马被选出来,然后在这几个候选人里再去做比较分析选出一个合适的人,这种场景在DTM里面可以做到,在EHR里就很难实现。
  • 又比如说,我们去分析几个群体的人才状况:分公司的人才结构,业务事业部的高管队伍能力,集团公司的后备人才情况,那么你的分析报告中至少得包括:这些群体的共性短板,关键差异,针对性的培养和发展方案等。这样的一个目标在DTM里面可以实现,但是在EHR里同样难以实现。
  • 再比如说,分析公司的关键人才和核心人群的保留因素,进而制定公司的人才保留策略。DTM同样可以实现。


由此可见,DTM的出发点是“人”和“人才”,关注人才的吸引、聘用、安置和保留,借助了数智化技术,在人才的数据、标签和组织里面不同的群体的关联交叉分析,精准不同群体的不同要求,并且在功能上紧密链接,围绕人才紧密耦合,完成持续人才供应的目标,宏观上形成组织层面人才管理的观点及洞见,进而实现人才决策和组织决策。相对较EHR,一个特别明显的差异在于:大数据分析决策在DTM里面能够极大的强化。从这个角度出发,我们就可以知道EHR和DTM的关系了,它们并不是一个相互替代,而是互为补充,并不冲突。
举例,DTM强调人才全息数据的处理,特别强调“预测性数据”的搜集,但原有的EHR系统内已应储备了很多总结性或者说现实性的数据,我们只需要通过不同的人才标签,就可以将这些数据进行处理,在这个基础上进而实现类似“人才管理看板”等很多EHR系统实现不了的功能。

DTM:HR自身大数据基因的持续进化

建立人才大数据治理体系,是DTM极其基础、关键、核心的前提,具体而言包括四项工作:一是建立人才数据业务模型,确定人才数据类型和数据指标;二是明确人才数据来源,建立或重构基于数据管控的人才管理体系;三是建立人才数据管理模型,明确人才数据应用方向和模式;四是建立人才数据应用模型,构建基于数据分析的应用场景,基于管理预测的智慧解读。乍一看是个繁杂漫长的变革过程,但可别忘了HR领域天然带有大数据基因,数智化人才管理不是创造,而是传承和迭代。回溯早期的人事管理,我们会发现人力资源领域一贯注重人事类各种档案、信息、数字的管理,例如:考勤、工龄、司龄、薪酬奖金、绩效、360度评估,以及荣誉表彰次数等等,同时也可以将学历、职位序列、岗位价值等信息转化为等级数字用于计算。数智化人才管理(DTM)与HR们并非刚刚结缘,就像人工智能并非21世纪的产物一样,大数据和AI新技术为人力资源的各类档案、信息、资料库的管理唤起了新的生机。构建系统化、智能化的HR大数据平台帮助HR部门为组织带来增量价值,其实质是因时因地做出智能的人才管理决策,为企业战略、业务和经营持续提供人才梯队支撑,获取、发展以及留存所需的人才。

所以面对数智化转型,HR部门大可不必认为这是一项全新的任务,而应是对现有人力资源管理体系的一次技术性升级迭代。HR们完全可以保有充足的信心,来完成这项时代要求下必须的任务。

本章为“什么是数智化人才管理?”开篇,后续篇章将分享数智化人才管理的逻辑及价值应用,敬请期待!